2-Color Display Digital Flow Switch Series PFM

Flow rate range: $10,25,50,100 \mathrm{c} / \mathrm{min}$.

Fluid
Air, $\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{CO}_{2}$

Minimum unit setting: $0.01 \mathrm{e} / \mathrm{min}$.
($0.1 \mathrm{e} / \mathrm{min}$ when the flow rate range is $25,50,100 \mathrm{e} / \mathrm{min}$.)
Repeatability: $\pm 1 \%$ F.S. or less

Grease-free
Flow adjustment valve is integrated. (Reduced piping and space saving)
Response time:
Either $50 \mathrm{msec} ., 0.5 \mathrm{sec} ., 1 \mathrm{sec}$. or 2 sec. can be chosen.

2-color display

Irregular value at a glance

"加 ${ }^{\text {con }} \mathrm{HI}$ C ϵ

2-Golo Dlsplay Digital Flow switch

Integrated flow adjustment valve
Reduces piping installation work and space requirements. Special design provides smooth adjustment to match needle

Indicator function

Flashing speed varies according to flow rate. Color changes from green to red when rated flow rate is exceeded. Can be used as a simple monitor.

Flashing speed	Flow rate
Fast	High
Slow	Low

Connectors
Connection and removal of wiring is easy.

Support for vertical and horizontal secure mounting (panel mount)

A single panel opening is sufficient.
Reduces panel fitting work and enables space-savings.

Panel opening

	Integrated type	Remote type	
			[ic5
Measurement flow range		Model	
(e/min)	Model	Sensor unit	Display unit
0.2 to 10 (0.2 to 5)	PFM710	PFM510	PFM3 $\square \square$
0.5 to 25 (0.5 to 12.5)	PFM725	PFM525	
1 to 50 (1 to 25)	PFM750	PFM550	
2 to 100 (2 to 50)	PFM711	PFM511	

[^0]
Sartes PFW

Compass

Same size even when the model with different flow rate range ($10,25,50,100 \mathrm{l} / \mathrm{min}$) is chosen.

Lightwoighiessig (oumm
 (With one-touch fitting, without flow adjustment valve)

 Conventional model PF2A711: 290 g

Comparison with the conventional model PF2A711 (10 to $100 \mathrm{l} / \mathrm{min}$)

Redueed piphinspees

Mountable in a narrow location since the straight piping length* is not required.

* A straight piping length of 8 times the piping diameter is required for the conventional model.

Comparison with the conventional model PF2A711 (10 to 100 llmin) when ø6 one-touch fittings are attached.

Piping Variations

Main Functions

Selection of fluid

Air, Nitrogen (N2), Argon (Ar) or Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ can be selected using the buttons.

Secret code setting function

The user must input a secret code to cancel the keylock mode. This ensures that only authorized persons can operate the switch.

For details and other functions, refer to page 939.

Power-saving mode

Turning off the display can save power consumption.

The decimal point indicators flash in power-saving mode.

Selection of indication unit	User can select between ANR and Ne/min for each fluid. $[A N R] \quad$Indicates the flow rate converted to a volume under standard conditions: $20^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ (atmosphere), 65\%RH $[\mathrm{Ne} / \mathrm{min}]$ Indicates the flow rate converted to a volume under normal conditions: $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ (atmosphere).
External input	Can be selected from accumulated value external reset, auto-shift and auto-shift zero.
Indication resolution	Minimum unit setting can be selected from $1 \mathrm{e} / \mathrm{min}, 0.1 \mathrm{e} / \mathrm{min}$ and $0.01 \mathrm{e} / \mathrm{min}$. Depends on the model. Refer to the specifications (P. 939) for details.

Several Combinations

Depending on the installation conditions, it is possible to add or remove the flow adjustment valve, change the fitting type and the piping direction as desired.

The accuracy may fluctuate by 2 to 3% just after replacement.
(Repeatability does not change.)

Recommended Air Circuits

Vacuum line

Applications

2-Color Display Digital Flow Switch

	Features	P. 900 to 903
Series PFM7 Integrated Display	How to Order Specifications Piping Specifications / Mass Analog Output Internal Circuits and Wiring Examples Dimensions	P. 906
Series PFM5 Remote Sensor Unit 909		

2-Color Display Digital Flow Switch

 Series PFM7How to Order

Piping Variations

	With one-touch fittings (C4, C6, C8, N7)		Female thread (01, 02, N01, N02, F01, F02)	
	Straight (Nil)	Bottom (L)	Straight (Nil)	Bottom (L)
Without flow adjustment valve (Nil)				
With flow adjustment valve (S)				

Option 1

Nil	W	Z
With lead wire with connector (2 m)	With lead wire with connector $(2 \mathrm{~m})+$ Rubber cover for connector (silicon rubber)	Without lead wire with connector
Lead wire length 2 m		

Option 2

Nil \quad None

Made to Order

Symbol	Specification/Description
X693	Change of piping entry direction combination
X694	Compatible with argon (Ar) and Carbon dioxide (CO2) mixed gas

For details, refer to page 940 through to 942.

DIN Rail Mounting Bracket (Order Separately)

Specifications

Note 1) When the minimum unit setting $0.01 \mathrm{e} / \mathrm{min}$ is selected for $10 \mathrm{e} / \mathrm{min}$ type, the indication upper limit will be $[9.99 \mathrm{e} / \mathrm{min}]$.
When the minimum unit setting $0.1 \mathrm{e} / \mathrm{min}$ is selected for $100 \mathrm{e} / \mathrm{min}$ type, the indication upper limit will be $[99.9 \mathrm{e} / \mathrm{min}$].
Note 2) User can select between $0.01 \mathrm{e} / \mathrm{min}$ and $0.1 \mathrm{e} / \mathrm{min}$ for the PFM710, and between $0.1 \mathrm{e} / \mathrm{min}$ and $1 \mathrm{e} / \mathrm{min}$ for the PFM711 respectively. If the indication unit is selected to "CFM", the minimum unit setting cannot be changed.
At the time of shipment from the factory, the minimum unit setting is set to $0.1 \mathrm{e} / \mathrm{min}$ for the PFM710 and $1 \mathrm{e} / \mathrm{min}$ for the PFM711 respectively.
Note 3) Set to "ANR" at the time of shipment from the factory.
"ANR" is used for standard conditions: $20^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ and 65% R.H.
"Ne/min" is used for normal conditions: $0^{\circ} \mathrm{C}$ and 1 atm .
When equipped with a unit switching function. (The SI unit (e/min or e) is fixed for types with no unit switching function.)
Note 4) Cleared when the power supply is turned off. Hold function can be selected. (Interval of 2 min or 5 min can be selected).
If the 5 min interval is selected, the life of the memory element (electronic part) is limited to 1 million cycles. (If energized for 24 hours, life is calculated as $5 \mathrm{~min} \times 1$ million $=5$ million $\mathrm{min}=9.5$ years). Therefore, if using the hold function, calculate the memory life for your operating conditions, and use within this life.
Note 5) Set to $1.5 \mathrm{~s}(90 \%)$, can be changed to 100 ms .
Note 6) Set to hystresis mode at the time of shipment from the factory. Can be changed to window comparator mode using push-buttons.

2-Color Display Digital Flow Switch Series PFMMT

Piping Specifications / Mass

Part no.	01	02	N01	N02	F01		F02	C4	C6	C6	N7
Port size	$\begin{aligned} & \mathrm{Rc} \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & 1 / 4 \end{aligned}$	$\begin{gathered} \text { NPT } \\ 1 / 8 \end{gathered}$	$\begin{gathered} \text { NPT } \\ 1 / 4 \end{gathered}$	G1/8		G1/4	```\varnothing4 (5/32") one-touch fitting```	$\varnothing 6$ one-touch fitting	```ø8 (5/16") one-touch fitting```	$\begin{aligned} & \varnothing 1 / 4^{\prime \prime} \\ & \text { one-touch } \\ & \text { fitting } \end{aligned}$
Mass	Straight Bottom Straight Bottom		Without orifice: 95 g Without orifice: 105 g With orifice: 135 g With orifice: 145 g			Straight Bottom Straight Bottom	Without orifice: 125 g Without orifice: 135 g With orifice: 165 g With orifice: 175 g	Straight Without orifice: 55 g Bottom Without orifice: 65 g Straight With orifice: 95 g Bottom With orifice: 105 g			
Wetted parts material	LCP, PBT, Brass (Electroless nickel plated), HNBR (+ Fluoro coated), FKM (+ Fluoro coated), Silicon, Au, Stainless steel 304										

Analog Output Note: Analog output at maximum rated flow rate when CO_{2} is selected is $3[\mathrm{~V}]$ for the voltage output type and $12[\mathrm{~mA}]$ for the current output type.

		Analog Voltage Output (1 to 5 V)							
		Model	Max. rated flow value [$/ / \mathrm{min}$]					Analog Current Output (4 to 20 mA)	
	1	PFM710- \square-C/E	10					PFM710- \square-D/F	10 (5)
		PFM725- \square-C/E	25					PFM725- \square-D/F	25 (12.5)
		PFM750- \square-C/E	50					PFM750- \square-D/F	50 (25)
	0 Max. rated	PFM711- \square-C/E	100					PFM711- \square-D/F	100 (50)

Internal Circuits and Wiring Examples

2 NPN outputs type
PFM7 $\square \square \square$ - $\square \square$-A- $\square \square$

Max. $28 \mathrm{~V}, 80 \mathrm{~mA}$
Internal voltage drop 1 V or less

NPN + Analog output type PFM7
NPN + Analog output type PFM7 $\square \square \square-\square-D-\square \square$

NPN + External input type
PFM7 $\square \square \square-\square \square$-G- $\square \square$

PNP + Analog output type PFM7 $\square \square \square-\square \square-E-\square \square$ PNP + Analog output type PFM7 $\square \square \square-\square \square-F-\square \square$

Max. 80 mA Internal voltage drop 1.5 V or less

E: Analog output 1 to 5 V Output impedance $1 \mathrm{k} \Omega$
F: Analog output 4 to 20 mA Load impedance 50 to 600Ω

Max. $28 \mathrm{~V}, 80 \mathrm{~mA} \quad$ External input: No-voltage input Internal voltage drop Reed switch or solid 1 V or less state switch input 30 msec or more

PNP + External input type

PFM7 $\square \square \square-\square \square$ - $\mathrm{H}-\square \square$

Max. 80 mA Internal voltage drop 1.5 V or less

External input: No-voltage input Reed switch or solid state switch input 30 msec or more

Accumulated pulse output wiring examples

```
2 PNP outputs type
PFM7 \(\square \square \square-\square \square-B-\square \square\)
PNP + Analog output type
PFM7 \(\square \square \square-\square \square\)-E- \(\square \square / P F M 7 \square \square \square-\square \square-F-\square \square\)
PNP + External input type
PFM7 \(\square \square \square-\square \square-\mathrm{H}-\square \square\)
2 NPN outputs type
    PFM7\square\square\square\square-\square\square-A-\square\square
NPN + Analog output type
    PFM7}\square\square\square-\square\square-C-\square\square/PFM7\square\square\square-\square\square-D-\square
NPN + External input type
    PFM7\square\square\square-\square\square-G-\square\square



\section*{Series PFM7}

\section*{Dimensions}

PFM7 \(\square \square-C 4 / C 6 / C 8 / N 7\)


\section*{PFM7 \(\square \square\)-C4L/C6L/C8L/N7L}


\section*{2-Color Display Digital Flow Switch Series PFMM7}

Dimensions

\section*{PFM7 \(\square \square\)-(N)01/(N)02/F01}


PFM7 \(\square \square-(\mathrm{N}) 01 \mathrm{~L} /(\mathrm{N}) 02 \mathrm{~L} / \mathrm{F01L}\)



\section*{Series PFM7}

\section*{Dimensions}

PFM7 \(\square \square\)-F02


PFM7 \(\square \square\)-F02L


\section*{2-Color Display Digital Flow Switch Series PFM7}

Dimensions

\section*{PFM7 \(\square\) S-C4/C6/C8/N7}

\begin{tabular}{c|c} 
& \((\mathrm{mm})\) \\
\hline \begin{tabular}{c} 
One-touch fitting \\
Applicable tube O.D.
\end{tabular} & A \\
\hline\(\varnothing 4\left(5 / 32^{\prime \prime}\right)\) & 92.2 \\
\hline\(\varnothing 6\) & 92.6 \\
\hline\(\varnothing 8\left(5 / 16^{\prime \prime}\right)\) & 96 \\
\hline\(\varnothing 1 / 4^{\prime \prime}\) & 92.6 \\
\hline
\end{tabular}


PFM7 \(\square S-C 4 L / C 6 L / C 8 L / N 8 L\)

\begin{tabular}{c|c} 
& \multicolumn{1}{c}{\((\mathrm{mm})\)} \\
\hline \begin{tabular}{c} 
One-touch fitting \\
Applicable tube O.D.
\end{tabular} & \(\mathbf{A}\) \\
\hline\(ø 4(5 / 32\) ") & 10.1 \\
\hline\(\varnothing 6\) & 10.3 \\
\hline\(\varnothing 8\left(5 / 16^{\prime \prime}\right)\) & 12 \\
\hline\(\varnothing 1 / 4^{\prime \prime}\) & 10.3 \\
\hline
\end{tabular}

PFM


SSMC

\section*{Series PFM7}

\section*{Dimensions}

\section*{PFM7 \(\square \mathrm{S}-(\mathrm{N}) 01 /(\mathrm{N}) 02 / \mathrm{F01}\)}



\section*{PFM7 \(\square\) S-(N)01L/(N)02L/F01L}



\section*{2-Color Display Digital Flow Switch Series PFM7}

Dimensions
PFM7 \(\square\) S-F02




PFM7 \(\square\) S-F02L


\section*{Series PFM7}

\section*{Dimensions}

Panel mount / Without flow adjustment valve / Straight


Panel mount / Without flow adjustment valve


Panel Fitting Dimensions


Panel thickness 1 to 3.2 mm
Note) Piping entry direction: Minimum dimensions for bottom side piping. If using straight piping, the piping material and tubing need to be taken into consideration when designing the system. If a bend (R) is used, limit it to R3 or less.

Panel mount / With flow adjustment valve / Straight



Panel mount / With flow adjustment valve


\section*{Panel Fitting Dimensions}


Panel thickness 1 to \(\mathbf{3 . 2} \mathbf{~ m m}\)
Note) Piping entry direction: Minimum dimensions for bottom side piping. If using straight piping, the piping material and tubing need to be taken into consideration when designing the system. If a bend \((R)\) is used, limit it to R3 or less.

\section*{2-Color Display Digital Flow Switch Series PFM7}

Dimensions

With bracket / Without flow adjustment valve


DIN rail mounting

- DIN rail (supplied by customers)
- Port size, F02: G1/4 cannot be mounted on the DIN rail.

With bracket / With flow adjustment valve


Lead wire with connector
ZS-33-D


Cable Specifications of Lead Wire with Connector
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Rated temperature} & \(80^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Rated voltage} & 30 V \\
\hline \multicolumn{2}{|l|}{Number of wires} & 4 \\
\hline \multirow{4}{*}{Conductor} & Nominal cross section area & AWG26 \\
\hline & Material & Soft copper wire \\
\hline & Construction & \(28 / 0.08 \mathrm{~mm}\) \\
\hline & External diameter & Approx. 0.50 mm \\
\hline \multirow{3}{*}{Insulation} & Material & Cross-linked vinyl chloride resin compound \\
\hline & External diameter & Approx. 1.00 mm \\
\hline & Colors & Brown, White, Black, Blue \\
\hline \multirow[t]{2}{*}{Sheath} & Material & Oil-resistant vinyl chloride resin compound \\
\hline & Color & Light gray \\
\hline \multicolumn{2}{|l|}{Finished external diameter} & \(ø 3.5{ }_{-0.25}^{+0.10}\) \\
\hline
\end{tabular}

\title{
2-Color Display Digital Flow Switch Series PFM5
}

Remote sensor unit

How to Order

\begin{tabular}{|c|c|}
\hline \(\mathbf{N i l}\) & Straight \\
\hline \(\mathbf{L}\) & Bottom \\
\hline
\end{tabular}
* Different combinations of
piping entry directions for
IN and OUT side are
available as made-to-order.
(Refer to page 940.)
Piping Variations
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{With one-touch fittings (C4, C6, C8, N7)} & \multicolumn{2}{|l|}{Female thread (01, 02, N01, N02, F01, F02)} \\
\hline & Straight (Nil) & Bottom (L) & Straight (Nil) & Bottom (L) \\
\hline Without flow adjustment valve (Nil) &  &  &  &  \\
\hline With flow adjustment valve (S) &  &  &  &  \\
\hline
\end{tabular}

\title{
2-Color Display Digital Flow Switch Series PF/M5
}

\section*{Option 1}
\begin{tabular}{|c|l|c|}
\hline Nil & \multicolumn{1}{c|}{ W } & \multicolumn{1}{c|}{ Z } \\
\hline With lead wire with connector (2 m) & \begin{tabular}{l} 
With lead wire with connector \((2 \mathrm{~m})+\) \\
Rubber cover for connector (silicon rubber)
\end{tabular} & Without lead wire with connector \\
Lead wire length 2 m & &
\end{tabular}

\section*{Option 2}
Nil \(\quad\) None



For details, refer to page 940 and 941.

\section*{DIN Rail Mounting Bracket (Order Separately)}


\section*{Series PFM5}

Specifications
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Model} & PFM510 & PFM525 & PFM550 & PFM511 \\
\hline \multicolumn{3}{|l|}{Applicable fluid} & \multicolumn{4}{|c|}{\begin{tabular}{l}
Dry air, \(\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{CO}_{2}\) \\
(Air quality grade is JIS B8392.1-1, 1.2 to 1.6.2 and ISO8573.1-1, 1.2 to 1.6.2.)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Rated flow range Note) (Flow rate range)}} & Dry air, \(\mathrm{N}_{2}, \mathrm{Ar}\) & 0.2 to \(10 \mathrm{e} / \mathrm{min}\) & 0.5 to \(25 \mathrm{c} / \mathrm{min}\) & 1 to \(50 \mathrm{c} / \mathrm{min}\) & 2 to \(100 \mathrm{l} / \mathrm{min}\) \\
\hline & & \(\mathrm{CO}_{2}\) & 0.2 to \(5 \mathrm{l} / \mathrm{min}\) & 0.5 to \(12.5 \mathrm{l} / \mathrm{min}\) & 1 to \(25 \mathrm{e} / \mathrm{min}\) & 2 to \(50 \mathrm{e} / \mathrm{min}\) \\
\hline \multicolumn{3}{|l|}{Accuracy} & \multicolumn{4}{|c|}{\(\pm 3 \%\) F.S. or less} \\
\hline \multicolumn{3}{|l|}{Repeatability} & \multicolumn{4}{|c|}{\(\pm 1 \%\) F.S. or less (Fluid: Dry air)} \\
\hline \multicolumn{3}{|l|}{Pressure characteristics} & \multicolumn{4}{|c|}{\(\pm 5 \%\) F.S. or less (based on 0.35 MPa )} \\
\hline \multicolumn{3}{|l|}{Temperature characteristics} & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \pm 2 \% \text { F.S. }\left(15 \text { to } 35^{\circ} \mathrm{C}\right) \\
& \pm 5 \% \text { F.S. }\left(0 \text { to } 50^{\circ} \mathrm{C}\right)
\end{aligned}
\]} \\
\hline \multicolumn{3}{|l|}{Operating pressure range} & \multicolumn{4}{|c|}{-100 kPa to 750 kPa} \\
\hline \multicolumn{3}{|l|}{Rated pressure range} & \multicolumn{4}{|c|}{-70 kPa to 750 kPa} \\
\hline \multicolumn{3}{|l|}{Proof pressure} & \multicolumn{4}{|c|}{1 MPa} \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{Analog output}} & Response time & \multicolumn{4}{|c|}{\begin{tabular}{l}
50 msec or 1 s (with response time selection function: 1 s at no-voltage input) \\
\(\rightarrow\) Refer to the internal circuits and wiring examples on page 921.
\end{tabular}} \\
\hline & & Voltage output & \multicolumn{4}{|c|}{Voltage output: 1 to 5 V Output impedance: \(1 \mathrm{k} \Omega\)} \\
\hline & & Current output & \multicolumn{4}{|c|}{Current output: 4 to 20 mA Max. load impedance: \(600 \Omega\), Min. load impedance: \(50 \Omega\)} \\
\hline \multicolumn{3}{|l|}{Status LED's} & \multicolumn{4}{|c|}{Power ON indicator: Lights when power is turned on (Green). Flow rate indicator: Flashes when flow is applied (Green).} \\
\hline \multicolumn{3}{|l|}{Power supply voltage} & \multicolumn{4}{|c|}{\(24 \mathrm{VDC} \pm 10 \%\)} \\
\hline \multicolumn{3}{|l|}{Current consumption} & \multicolumn{4}{|c|}{35 mA or less} \\
\hline \multirow{8}{*}{Environmental resistance} & \multicolumn{2}{|l|}{Enclosure} & \multicolumn{4}{|c|}{IP40} \\
\hline & \multicolumn{2}{|l|}{Operating fluid temperature} & \multicolumn{4}{|c|}{0 to \(50^{\circ} \mathrm{C}\) (with no freezing and condensation)} \\
\hline & \multicolumn{2}{|l|}{Operating temperature range} & \multicolumn{4}{|c|}{Operating: 0 to \(50^{\circ} \mathrm{C}\) Stored: -10 to \(60^{\circ} \mathrm{C}\) (with no freezing and condensation)} \\
\hline & \multicolumn{2}{|l|}{Operating humidity range} & \multicolumn{4}{|c|}{Operating, Stored: 35 to 85\%R.H. (with no condensation)} \\
\hline & \multicolumn{2}{|l|}{Withstand voltage} & \multicolumn{4}{|c|}{1000 VAC for 1 min . between external terminal and case} \\
\hline & \multicolumn{2}{|l|}{Insulation resistance} & \multicolumn{4}{|c|}{\(50 \mathrm{M} \Omega\) or more ( 500 VDC Mega) between external terminal and case} \\
\hline & \multicolumn{2}{|l|}{Vibration resistance} & \multicolumn{4}{|l|}{Without orifice: 10 to 500 Hz with a 1.5 mm amplitude or \(98 \mathrm{~m} / \mathrm{s}^{2}\) acceleration, in each \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) direction for 2 hrs , whichever is smaller. With orifice: 10 to 150 Hz with a 1.5 mm amplitude or \(19.6 \mathrm{~m} / \mathrm{s}^{2}\) acceleration, in each \(X, Y, Z\) direction for 2 hrs , whichever is smaller.} \\
\hline & \multicolumn{2}{|l|}{Impact resistance} & \multicolumn{4}{|c|}{\(490 \mathrm{~m} / \mathrm{s}^{2}\) in \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) directions 3 times each} \\
\hline
\end{tabular}

Note: Flow rate unit is based on standard conditions ( \(20^{\circ} \mathrm{C}, 1 \mathrm{~atm}, 65 \% \mathrm{RH}\) ).

\section*{2-Color Display Digital Flow Switch Series PF/M5}

Piping Specifications / Mass
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Part no. & 01 & 02 & N01 & N02 & F01 & & F02 & C4 & C6 & C6 & N7 \\
\hline Port size & \[
\begin{aligned}
& \mathrm{Rc} \\
& 1 / 8
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Rc} \\
& 1 / 4
\end{aligned}
\] & \[
\begin{gathered}
\text { NPT } \\
1 / 8
\end{gathered}
\] & \[
\begin{gathered}
\text { NPT } \\
1 / 4
\end{gathered}
\] & G1/8 & & G1/4 & ```
    ø4
    (5/32")
one-touch
    fitting
``` &  & ```
 \emptyset
 (5/16")
one-touch
 fitting
``` & \[
\begin{gathered}
\varnothing 1 / 4^{\prime \prime} \\
\text { one-touch } \\
\text { fitting }
\end{gathered}
\] \\
\hline Mass & \multicolumn{2}{|l|}{\begin{tabular}{l}
Straight \\
Bottom \\
Straight \\
Bottom
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Without orifice: 95 g \\
Without orifice: 105 g \\
With orifice: 135 g \\
With orifice: 145 g
\end{tabular}} & Straight Bottom Straight Bottom & Without orifice: 125 g Without orifice: 135 g With orifice: 165 g With orifice: 175 g & \multicolumn{4}{|c|}{\begin{tabular}{ll} 
Straight & Without orifice: 55 g \\
Bottom & Without orifice: 65 g \\
Straight & With orifice: 95 g \\
Bottom & With orifice: 105 g
\end{tabular}} \\
\hline Wetted parts material & \multicolumn{11}{|l|}{LCP, PBT, Brass (Electroless nickel plated), HNBR (+ Fluoro coated), FKM (+ Fluoro coated), Silicon, Au, Stainless steel 304} \\
\hline
\end{tabular}

Analog Output \(\begin{gathered}\text { Note: Analog output at maximum rated flow rate when } \mathrm{CO}_{2} \text { is selected is } 4.57 \text { [V] } \\ \text { for the voltage output type and } 18.28 \text { [mA] for the current output type. }\end{gathered}\) for the voltage output type and 18.28 [mA] for the current output type.


Analog Voltage Output (1 to 5 V)
\begin{tabular}{|c|c|}
\hline Model & \begin{tabular}{c} 
Max. rated flow value \\
[e/min]
\end{tabular} \\
\hline PFM510- \(\square-1\) & \(10(5)\) \\
\hline PFM525- \(\square-1\) & \(25(12.5)\) \\
\hline PFM550- \(\square-1\) & \(50(25)\) \\
\hline PFM511- \(\square-1\) & \(100(50)\) \\
\hline
\end{tabular}
* ( ): Fluid: \(\mathrm{CO}_{2}\)


\section*{Analog Current Output (4 to 20 mA )}
\begin{tabular}{|c|c|}
\hline Model & \begin{tabular}{c} 
Max. rated flow value \\
[e/min]
\end{tabular} \\
\hline PFM510- \(\square-2\) & \(10(5)\) \\
\hline PFM525- \(\square-2\) & \(25(12.5)\) \\
\hline PFM550- \(\square-2\) & \(50(25)\) \\
\hline PFM511- \(\square-2\) & \(100(50)\) \\
\hline
\end{tabular}
* ( ): Fluid: \(\mathrm{CO}_{2}\)

\section*{Internal Circuits and Wiring} Examples
PFM5 \(\square \square\)


\section*{Series PFM5}

\section*{Dimensions}

\section*{PFM5 \(\square \square-C 4 / C 6 / C 8 / N 7\)}


\section*{PFM5 \(\square\)-C4L/C6L/C8L/N7L}


\section*{Dimensions}

PFM5 \(\square \square-(N) 01 /(N) 02 / F 01\)


PFM5 \(\square \square-(N) 01 L /(N) 02 L / F 01 L\)


\section*{Series PFM5}

\section*{Dimensions}

PFM5 \(\square \square\)-F02


PFM5 \(\square \square\)-F02L


\section*{2-Color Display Digital Flow Switch Series PFM/5}

Dimensions

\section*{PFM5 \(\square\) S-C4/C6/C8/N7}

\begin{tabular}{c|c} 
& \multicolumn{1}{c}{\((\mathrm{mm})\)} \\
\hline \begin{tabular}{c} 
One-touch fitting \\
Applicable tube O.D.
\end{tabular} & A \\
\hline\(\varnothing 4(5 / 32 ")\) & 92.2 \\
\hline\(\varnothing 6\) & 92.6 \\
\hline\(\varnothing 8\left(5 / 16^{\prime \prime}\right)\) & 96 \\
\hline\(\varnothing 1 / 4^{\prime \prime}\) & 92.6 \\
\hline
\end{tabular}


PFM5 \(\square\) S-C4L/C6L/C8L/N8L


SSMC

\section*{Series PFM5}

\section*{Dimensions}

\section*{PFM5 \(\square \mathrm{S}-(\mathrm{N}) 01 /(\mathrm{N}) 02 / \mathrm{F01}\)}


\section*{PFM5 \(\square\) S-(N)01L/(N)02L/F01L}



\section*{2-Color Display Digital Flow Switch Series PFM5}

Dimensions
PFM5 \(\square\) S-F02


PFM5 \(\square\) S-F02L


\section*{Series PFM5}

\section*{Dimensions}

Panel mount / Without flow adjustment valve / Straight


Panel mount / Without flow adjustment valve


Panel Fitting Dimensions


Panel thickness 1 to 3.2 mm
Note) Piping entry direction: Minimum dimensions for bottom side piping. If using straight piping, the piping material and tubing need to be taken into consideration when designing the system. If a bend (R) is used, limit it to R3 or less.

Panel mount / With flow adjustment valve / Straight



Panel mount / With flow adjustment valve


\section*{Panel Fitting Dimensions}


Panel thickness 1 to \(\mathbf{3 . 2} \mathbf{~ m m}\)
Note) Piping entry direction: Minimum dimensions for bottom side piping. If using straight piping, the piping material and tubing need to be taken into consideration when designing the system. If a bend (R) is used, limit it to R3 or less.

\section*{Dimensions}

With bracket / Without flow adjustment valve


DIN rail mounting

- DIN rail (supplied by customers)
- Port size, F02: G1/4 cannot be mounted on the DIN rail.

With bracket / With flow adjustment valve


Lead wire with connector
ZS-33-D


Cable Specifications of Lead Wire with Connector
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Rated temperature} & \(80^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Rated voltage} & 30 V \\
\hline \multicolumn{2}{|l|}{Number of wires} & 4 \\
\hline \multirow{4}{*}{Conductor} & Nominal cross section area & AWG26 \\
\hline & Material & Soft copper wire \\
\hline & Construction & \(28 / 0.08 \mathrm{~mm}\) \\
\hline & External diameter & Approx. 0.50 mm \\
\hline \multirow{3}{*}{Insulation} & Material & Cross-linked vinyl chloride resin compound \\
\hline & External diameter & Approx. 1.00 mm \\
\hline & Colors & Brown, White, Black, Blue \\
\hline \multirow{2}{*}{Sheath} & Material & Oil-resistant vinyl chloride resin compound \\
\hline & Color & Light gray \\
\hline \multicolumn{2}{|l|}{Finished external diameter} & \(ø 3.5{ }_{-0.25}^{+0.10}\) \\
\hline
\end{tabular}
* Connects to the PFM3 \(\square \square\) series.

\section*{Series PFM7/PFM5}

Common Specifications

Pressure Loss (Pressure: 350 [kPa])

\section*{PFM710, 510 / For 10 (e/min) \\ }

PFM750, 550 / For 50 ( \(/\) /min)


PFM725, 525 / For 25 (e/min)


PFM711, 511 / For 100 (e/min)


\section*{Flow Characteristics}


PFM750, 550 / For 50 ( \(/\) /min)


PFM725, 525 / For 25 (e/min)


PFM711, 511 / For 100 (e/min)


\section*{2-Color Display Digital Flow Switch Series PFM/T/PFM/5}

\section*{Parts Description}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{} & Description & Item \\
\hline & Output (OUT1) indicator (Green) & Illuminates when the output (OUT1) is turned on. Flashes when overcurrent error occurs. \\
\hline & Output (OUT2) indicator (Red) & Illuminates when the output (OUT2) is turned on. Flashes when overcurrent error occurs. \\
\hline & LED display & Indicates the flow rate, set mode state and error code. The display color can be selected between red and green according to the output (OUT1) status. \\
\hline & © Button & Selects the operation mode and increases the set value for ON and OFF. Used to transfer to peak indication mode. \\
\hline & (1) Button & Selects the operation mode and decreases the set value for ON and OFF. Used to transfer to bottom indication mode. \\
\hline \multirow[t]{2}{*}{PFM5 Flow rate confirmation indicator (Green)} & (s) Button & Used to make changes in each mode and to enter the set value. \\
\hline & Reset & Reset function is activated by pressing \(\Delta\) and \(\nabla\) buttons simultaneously. Returns the indicated value to zero and clears errors. \\
\hline \multirow[t]{6}{*}{Power confirmation indicator (Green)} & Body & Main body of the flow switch \\
\hline & Flow adjustment valve & Orifice mechanism to adjust the flow rate \\
\hline & Piping port & Connection port for piping \\
\hline & Knurled lock nut & Used to fix the needle. \\
\hline & Power confirmation indicator (Green) & Illuminates when power is supplied. \\
\hline & Flow rate confirmation indicator (Green) & Flashing interval changes according to flow rate. Flashes faster when flow rate is increased. Color changes to red when exceeding the rated flow rate. \\
\hline
\end{tabular}

\section*{Construction}


\section*{Component Parts}
\begin{tabular}{c|l|c|c}
\hline No. & \multicolumn{1}{|c|}{ Description } & Material & Note \\
\hline \(\mathbf{1}\) & Fitting for piping & Brass & Electroless nickel plated \\
\hline \(\mathbf{2}\) & O-ring & FKM & Fluoro coated \\
\hline \(\mathbf{3}\) & O-ring & HNBR & Fluoro coated \\
\hline \(\mathbf{4}\) & Rectifying module & \begin{tabular}{c} 
Stainless \\
steel 304
\end{tabular} & \\
\hline \(\mathbf{5}\) & Body & PBT & \\
\hline \(\mathbf{6}\) & Sensor housing & LCP & \\
\hline \(\mathbf{7}\) & Sensor chip & Silicon & \\
\hline \(\mathbf{8}\) & Orifice & Brass & Electroless nickel plated \\
\hline \(\mathbf{9}\) & Seal & FKM & Fluoro coated \\
\hline \(\mathbf{1 0}\) & Mesh & \begin{tabular}{c} 
Stainless \\
steel 304
\end{tabular} & \\
\hline \(\mathbf{1 1}\) & Bottom piping adapter & PBT & \\
\hline \(\mathbf{1 2}\) & O-ring & HNBR & Fluoro coated \\
\hline \(\mathbf{1 3}\) & \begin{tabular}{l} 
Flow adjustment valve \\
assembly
\end{tabular} & PBT & \\
\hline \(\mathbf{1 4}\) & Body B & Brass & Electroless nickel plated \\
\hline \(\mathbf{1 5}\) & Needle & Brass & Electroless nickel plated \\
\hline \(\mathbf{1 6}\) & O-ring & HNBR & Fluoro coated \\
\hline \(\mathbf{1 7}\) & O-ring & HNBR & Fluoro coated \\
\hline
\end{tabular}

\section*{Detection Principle}

This MEMS sensor chip consists of upstream temperature measuring sensor ( Ru ) and downstream temperature measuring sensor (Rd), which are placed symmetrically from the center of a platinum thin film coated heater ( Rh ) mounted on a membrane, and an ambient temperature sensor (Ra) for measuring gas temperature.
The principle is as shown in the diagram on the right. (a) When the gas is static, the temperature distribution of heated gas centered around Rh is uniform, and Ru and Rd have the same resistance. (b) When the gas flows from the left side, it upsets the balance of the temperature distribution of heated gas, and the resistance of Rd becomes greater than that of Ru.
The difference in resistance between Ru and Rd is proportional to the gas velocity, so measurement and analysis of the resistance can show the flow direction and velocity of the gas.
Ra is used to compensate the gas and/or ambient temperature.

(a) The gas is static.

Flow

(b) The gas flows from the left side.

\section*{Series PFM7/PFM5}

Component Parts
\begin{tabular}{|c|c|c|c|}
\hline No. & \multicolumn{2}{|l|}{Description} & Model \\
\hline 1 & \multicolumn{2}{|l|}{Body} & \\
\hline 2 & \multicolumn{2}{|l|}{Lead wire with connector (2 m)} & ZS-33-D \\
\hline 3 & \multicolumn{2}{|l|}{IN side Bottom piping adapter (with pin)} & ZS-33-P1L \\
\hline 4 & \multicolumn{2}{|l|}{OUT side Bottom piping adapter (with pin)} & ZS-33-P2L \\
\hline \multirow{4}{*}{5} & \multirow[t]{4}{*}{For straight piping Flow adjustment valve assembly (with pin)} & For 10 //min & ZS-33-10N \\
\hline & & For 25 //min & ZS-33-25N \\
\hline & & For 50 //min & ZS-33-50N \\
\hline & & For \(100 \mathrm{l} / \mathrm{min}\) & ZS-33-11N \\
\hline \multirow{4}{*}{6} & \multirow[t]{4}{*}{For bottom piping Flow adjustment valve assembly (with pin)} & For 10 //min & ZS-33-10NL \\
\hline & & For 25 //min & ZS-33-25NL \\
\hline & & For 50 //min & ZS-33-50NL \\
\hline & & For \(100 \mathrm{l} / \mathrm{min}\) & ZS-33-11NL \\
\hline \multirow{4}{*}{7} & \multirow{4}{*}{One-touch fitting} & ø4 (5/32") & ZS-33-C4 \\
\hline & & ø6 & ZS-33-C6 \\
\hline & & ø8 (5/16") & ZS-33-C8 \\
\hline & & ¢1/4" & ZS-33-N7 \\
\hline \multirow{6}{*}{8} & \multirow{6}{*}{Female thread} & Rc 1/8 & ZS-33-01 \\
\hline & & NPT 1/8 & ZS-33-N01 \\
\hline & & G 1/8 & ZS-33-F01 \\
\hline & & Rc 1/4 & ZS-33-02 \\
\hline & & NPT 1/4 & ZS-33-N02 \\
\hline & & G 1/4 & ZS-33-F02 \\
\hline
\end{tabular}


\title{
Flow Sensor Monitor Series PFM3
}

How to Order


\section*{Option / Part No.}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Description } & Part no. & Note \\
\hline Power supply / Output connector \((2 \mathrm{~m})\) & ZS-28-A & \\
\hline Bracket & ZS-28-B & With M3 x 5 e (2 pcs.) \\
\hline Sensor connector & ZS-28-C-1 & 1 pc. \\
\hline Panel mount adapter & ZS-27-C & With M3 x 8 e (2 pcs.) \\
\hline \begin{tabular}{l} 
Panel mount adapter + \\
Front protective cover
\end{tabular} & ZS-27-D & With M3 x 8 \(\ell(2\) pcs. \()\) \\
\hline
\end{tabular}

\footnotetext{
Note) Options are not assembled, but shipped together.
}

Specifications
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Model} & \multicolumn{4}{|c|}{PFM3 \(\square \square\)} \\
\hline \multirow[t]{2}{*}{Rated flow range (Flow rate range)} & Dry air, \(\mathrm{N}_{2}, \mathrm{Ar}\) & 0.2 to \(10 \mathrm{e} / \mathrm{min}\) & 0.5 to \(25 \mathrm{e} / \mathrm{min}\) & 1 to 50 e/min & 2 to \(100 \mathrm{e} / \mathrm{min}\) \\
\hline & \(\mathrm{CO}_{2}\) & 0.2 to \(5 \mathrm{l} / \mathrm{min}\) & 0.5 to \(12.5 \mathrm{l} / \mathrm{min}\) & 1 to \(25 \mathrm{e} / \mathrm{min}\) & 2 to \(50 \mathrm{l} / \mathrm{min}\) \\
\hline \multirow[t]{2}{*}{Displayable range} & Dry air, \(\mathrm{N}_{2}, \mathrm{Ar}\) & 0.2 to \(10.5 \mathrm{l} / \mathrm{min}\) & 0.5 to 26.3 e/min & 1 to \(52.5 \mathrm{e} / \mathrm{min}\) & 2 to \(105 \mathrm{e} / \mathrm{min}\) \\
\hline & \(\mathrm{CO}_{2}\) & 0.2 to \(5.2 \mathrm{e} / \mathrm{min}\) & 0.5 to \(13.1 \mathrm{e} / \mathrm{min}\) & 1 to \(26.2 \mathrm{l} / \mathrm{min}\) & 2 to \(52 \mathrm{l} / \mathrm{min}\) \\
\hline \multirow[b]{2}{*}{Settable range Note 1)} & Dry air, \(\mathrm{N}_{2}, \mathrm{Ar}\) & 0 to \(10.5 \mathrm{l} / \mathrm{min}\) & 0 to \(26.3 \mathrm{e} / \mathrm{min}\) & 0 to \(52.5 \mathrm{e} / \mathrm{min}\) & 0 to \(105 \mathrm{e} / \mathrm{min}\) \\
\hline & \(\mathrm{CO}_{2}\) & 0 to \(5.2 \mathrm{e} / \mathrm{min}\) & 0 to \(13.1 \mathrm{e} / \mathrm{min}\) & 0 to \(26.2 \mathrm{e} / \mathrm{min}\) & 0 to \(52 \mathrm{l} / \mathrm{min}\) \\
\hline \multicolumn{2}{|l|}{Minimum unit setting \({ }^{\text {Note } 2)}\)} & 0.01 lmin & 0.1 e/min & \(0.1 \mathrm{l} / \mathrm{min}\) & 0.1 //min \\
\hline \multicolumn{2}{|l|}{Accumulated pulse flow rate exchange value} & 0.1 e/pulse & 0.1 e/pulse & 0.1 e pulse & 1 e pulse \\
\hline \multicolumn{2}{|l|}{Indication unit Note 3)} & \multicolumn{4}{|c|}{Real-time flow rate e/min, CFM \(\times 10^{-2}\) Accumulated flow \(\ell, \mathrm{ft}^{3} \times 10^{-1}\)} \\
\hline \multicolumn{2}{|l|}{Accumulated flow range \({ }^{\text {Note 4) }}\)} & \multicolumn{4}{|c|}{1999999 e} \\
\hline \multicolumn{2}{|l|}{Power supply voltage} & \multicolumn{4}{|c|}{24 VDC (ripple \(\pm 10 \%\) or less) (With polarity protection)} \\
\hline \multicolumn{2}{|l|}{Current consumption} & \multicolumn{4}{|c|}{50 mA or less} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Sensor input \\
Number of inputs: 1
\end{tabular}} & \multicolumn{4}{|c|}{\begin{tabular}{l}
PFM30■: Voltage input 1 to 5 VDC (input impedance: \(1 \mathrm{M} \Omega\) ) \\
PFM31■: Current input 4 to 20 mADC (input impedance: \(250 \Omega\) )
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Hysteresis Note 5)} & \multicolumn{4}{|c|}{Hysteresis mode: Variable, Window comparator mode: Variable} \\
\hline \multicolumn{2}{|l|}{Switch output} & \multicolumn{4}{|c|}{NPN or PNP open collector output: 2 outputs Maximum load current: 80 mA , max. load voltage 30 VDC (at NPN output), Residual voltage 1 V or less (at load current 80 mA ), With short-circuit protection} \\
\hline \multicolumn{2}{|l|}{Accumulated pulse output} & \multicolumn{4}{|c|}{NPN or PNP open collector output (Same as switch output)} \\
\hline \multicolumn{2}{|l|}{Response time} & \multicolumn{4}{|c|}{\(1 \mathrm{~s}(50 \mathrm{~ms}, 0.5 \mathrm{~s}, 2 \mathrm{~s}\) can be selected.)} \\
\hline \multicolumn{2}{|l|}{Repeatability} & \multicolumn{4}{|c|}{\(\pm 0.1 \%\) F.S. or less, Analog output accuracy: \(\pm 0.3 \%\) F.S. or less} \\
\hline \multicolumn{2}{|l|}{Analog output} & \multicolumn{4}{|r|}{Voltage output: 1 to 5 VDC ( \(0 \mathrm{e} / \mathrm{min}\) to max. rated flow rate value) Output impedance: Approx. \(1 \mathrm{k} \Omega\), Accuracy: \(\pm 1 \%\) F.S. or less (relative to display value) Current output: 4 to 20 mADC ( \(0 \mathrm{e} / \mathrm{min}\) to max. rated flow rate value) Max. load impedance: \(600 \Omega\) (at 24 VDC), Min. load impedance: \(50 \Omega\) Accuracy: \(\pm 1 \%\) F.S. or less (relative to display value)} \\
\hline \multicolumn{2}{|l|}{Display accuracy} & \multicolumn{4}{|c|}{\(\pm 0.5 \%\) F.S. \(\pm 1\) digit or less} \\
\hline \multicolumn{2}{|l|}{Display method} & \multicolumn{4}{|l|}{3+1/2-digit, 7-segment LED 2-color display (Red/Green) Sampling cycle: 10 times/sec} \\
\hline \multicolumn{2}{|l|}{Status LED's} & \multicolumn{4}{|l|}{OUT1: Illuminates when output is turned ON (Green). OUT2: Illuminates when output is turned ON (Red).} \\
\hline \multicolumn{2}{|l|}{External input Note 6)} & \multicolumn{4}{|l|}{No-voltage input (Reed or Solid state), LOW level input 30 msec or more, LOW level 0.4 V or less} \\
\hline \multicolumn{2}{|l|}{Enclosure} & \multicolumn{4}{|c|}{IP40} \\
\hline \multicolumn{2}{|l|}{Operating temperature range} & \multicolumn{4}{|c|}{Operating: 0 to \(50^{\circ} \mathrm{C}\) Stored: -10 to \(60^{\circ} \mathrm{C}\) (with no freezing and condensation)} \\
\hline \multicolumn{2}{|l|}{Operating humidity range} & \multicolumn{4}{|c|}{Operating, Stored: 35 to 85\%R.H. (with no condensation)} \\
\hline \multicolumn{2}{|l|}{Withstand voltage} & \multicolumn{4}{|c|}{1000 VAC for 1 min . between whole charging part and live part} \\
\hline \multicolumn{2}{|l|}{Insulation resistance} & \multicolumn{4}{|c|}{\(50 \mathrm{M} \Omega\) or more (500 VDC Mega) between whole charging part and live part} \\
\hline \multicolumn{2}{|l|}{Vibration resistance} & \multicolumn{4}{|l|}{10 to 150 Hz with a 1.5 mm amplitude or \(98 \mathrm{~m} / \mathrm{s}^{2}\) acceleration, in each \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) direction for 2 hrs , whichever is smaller. (de-energized)} \\
\hline \multicolumn{2}{|l|}{Impact resistance} & \multicolumn{4}{|c|}{\(100 \mathrm{~m} / \mathrm{s}^{2}\) in X, Y, Z directions 3 times each(de-energized)} \\
\hline \multicolumn{2}{|l|}{Temperature characteristics} & \multicolumn{4}{|c|}{\(\pm 0.5 \% \mathrm{~F} . \mathrm{S}\). or less (based on \(25^{\circ} \mathrm{C}\) )} \\
\hline \multicolumn{2}{|l|}{Connection} & \multicolumn{4}{|c|}{Power supply / Output connection: 5P connector, Sensor connection: 4P connector} \\
\hline \multicolumn{2}{|l|}{Material} & \multicolumn{4}{|c|}{Front case, Rear case: PBT} \\
\hline \multicolumn{2}{|l|}{Mass} & \multicolumn{4}{|c|}{30 g (Without cable) 85 g (With cable)} \\
\hline
\end{tabular}

Note 1) Select the sensor to connect in the initial setting. If \(\mathrm{CO}_{2}\) is selected as the operating fluid, the value is \(1 / 2\) on the maximum side.
Note 2) When \(10 \mathrm{e} / \mathrm{min}\) with a minimum unit setting of \(0.01 \mathrm{l} / \mathrm{min}\) is selected for the connected sensor, the upper limit of the display range is \(10.50 \mathrm{e} / \mathrm{min}\).
When \(100 \mathrm{e} / \mathrm{min}\) with a minimum unit setting of \(0.1 \mathrm{e} / \mathrm{min}\) is selected for the connected sensor, the upper limit of the display range is \(105.0 \mathrm{e} / \mathrm{min}\).
The setting at the time of shipment is \(10 \mathrm{l} / \mathrm{min}\) with a minimum unit setting of \(0.1 \mathrm{e} / \mathrm{min}\) for the connected sensor.
Note 3) When equipped with a unit switching function. (The SI unit (e/min or \(\ell\) ) is fixed for types with no unit switching function.)
Note 4) The accumulated flow value is cleared to 0 when power is turned off. It is possible to select function that holds the accumulated flow value so it is not cleared. (The accumulated flow value can be held at 2 - or 5 -minute intervals.) The service life of the memory element (electronic component) is limited to 1 million overwrite cycles (assuming 24 -hour operation, 5 minutes \(\times 1\) million cycles \(=5\) million minutes \(=9.5\) years) when 5 -minute intervals are selected. Therefore, when using the holding function, calculate the service life based on the usage conditions, and use the switch within the service life. Applies to models equipped with a unit switching function. (The SI unit ( \(/ / \mathrm{min}\) or \(\ell\) ) is fixed for types with no unit switching function.)
Note 5) Set to hystresis mode at the time of shipment from the factory. Can be changed to window comparator mode using push-buttons.
Note 6) Accumulated external reset function at the time of shipment from the factory. Auto-shift or auto-shift zero function can be selected using push-buttons.

1 to 5 VDC
\begin{tabular}{|c|c|}
\hline Rated flow range & \begin{tabular}{c} 
Max. rated flow value \\
[e/min]
\end{tabular} \\
\hline 0.2 to \(10 ~ / \mathrm{min}\) & \(10(5)\) \\
\hline 0.5 to \(25 / \mathrm{min}\) & \(25(12.5)\) \\
\hline 1 to \(50 / \mathrm{min}\) & \(50(25)\) \\
\hline 2 to \(100 ~ / \mathrm{min}\) & \(100(50)\) \\
\hline
\end{tabular}
* ( ): Fluid: \(\mathrm{CO}_{2}\)

\section*{Internal Circuits}

PFM3 \(\square 0\)
NPN open collector output: 2 outputs
Max. \(30 \mathrm{~V}, 80 \mathrm{~mA}\), residual voltage 1 V or less
Analog output: 1 to 5 V
Output impedance: approx. \(1 \mathrm{k} \Omega\)


PFM3 \(\square 1\)
NPN open collector output: 2 outputs
Max. \(30 \mathrm{~V}, 80 \mathrm{~mA}\), residual voltage 1 V or less
Analog output: 4 to 20 mA
Max. load impedance: \(300 \Omega\) (12 VDC) \(600 \Omega\) ( 24 VDC)
Min. load impedance: \(50 \Omega\)


\section*{PFM3 \(\square 2\)}

NPN open collector output with external input: 2 outputs Max. \(30 \mathrm{~V}, 80 \mathrm{~mA}\), residual voltage 1 V or less


Accumulated pulse output wiring example


PFM3 \(\square 3\)
PNP open collector output: 2 outputs
Max. 80 mA , residual voltage 1 V or less
Analog output: 1 to 5 V
Output impedance: approx. \(1 \mathrm{k} \Omega\)


PFM3 \(\square 4\)
PNP open collector output: 2 outputs
Max. 80 mA , residual voltage 1 V or less
Analog output: 4 to 20 mA
Max. load impedance: \(300 \Omega\) (12 VDC) \(600 \Omega\) ( 24 VDC ) Min. load impedance: \(50 \Omega\)


PFM3 \(\square 5\)
PNP open collector output with external input: 2 outputs Max. 80 mA , residual voltage 1 V or less



\section*{Series PFM3}

\section*{Descriptions}

\section*{LCD Display}

Shows the current flow rate, mode setting, selected display unit, and error code. Four display modes are available, some of which use indications that are fixed either red or green, and others use indications that change from green to red.

Output (OUT1) Indicator (Green)
Lights when the output (OUT1) is turned on.

\section*{\(\triangle\) Button}

Used for mode selection and increasing the ON/OFF setting value. Also used to switch to peak display mode.

\section*{Output (OUT2) Indicator (Red)}

Lights when the output (OUT2) is turned on.

\section*{SET Button}

Used to activate mode changes and new setting values.

\section*{\(\nabla\) Button}

Used for mode selection and decreasing the ON/OFF setting value. Also used to switch to bottom display mode.

\section*{Dimensions}


Sensor connector (ZS-28-C-1)
\begin{tabular}{l}
\begin{tabular}{|c|c|}
\hline Pin no. & Terminal name \\
\hline 1 & \(\mathrm{DC}(+)\) \\
\hline 2 & N.C. \\
\hline 3 & DC \((-)\) \\
\hline 4 & \(\mathrm{IN}^{*}\) \\
\hline
\end{tabular} \\
\hline 1 to 5 V or 4 to 20 mA
\end{tabular}


View A

With panel mount adapter


With panel mount adapter + Front protective cover


\section*{Series PFM3}

\section*{Dimensions}

\section*{Panel fitting dimensions}

\section*{Secure mounting of \(\mathbf{n}\) (2 or more) switches (horizontal)}



Secure mounting of \(\mathbf{n}\) (2 or more) switches (vertical)


Note) If a bend (R) is used, limit it to \(R 2\) or less.

Power supply / Output connector (ZS-28-A)


Cable Specifications
\begin{tabular}{|l|l|c|}
\hline \multicolumn{2}{|l|}{ Rated temperature } & \(105^{\circ} \mathrm{C}\) \\
\hline Rated voltage & 300 V \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Number \\
Con \\
ductor
\end{tabular}} & Nominal cross section area & 5 \\
\cline { 2 - 3 } & Material & \(0.2 \mathrm{~mm}^{2}\) \\
\cline { 2 - 3 } & Construction & Soft copper wire \\
\cline { 2 - 3 } & External diameter & \(40 / 0.08 \mathrm{~mm}\) \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Insula \\
tion
\end{tabular}} & Material & 0.58 mm \\
\cline { 2 - 3 } & External diameter & Cross-linked vinyl chloride resin compound \\
\cline { 2 - 3 } & Standard thickness & Approx. 1.12 mm \\
\cline { 2 - 3 } & Colors & 0.27 mm \\
\hline \multirow{3}{*}{ Sheath } & Material & Standard thickness \\
\cline { 2 - 3 } & Color & Oil-resistant vinyl chloride resin compound \\
\hline \multicolumn{3}{|l|}{ Finished } \\
\cline { 2 - 3 } & external diameter & 0.5 mm \\
\hline
\end{tabular}

\section*{Series PFM}

Function Details

\section*{Output operation}

The output operation can be selected from the following:
Output (hysteresis mode and window comparator mode) corresponding to real-time flow rate,
Output corresponding to accumulated flow,
Accumulated output pulse output
At the time of shipment from the factory, it is set to hysteresis mode and normal output.

\section*{Indication color}

The indication color can be selected for each output condition. The selection of the indication color provides visual identification of abnormal values. (The indication color depends on OUT1 setting.)

\section*{Selection of operating fluid}

The fluid can be selected. If argon (Ar) or carbon dioxide ( \(\mathrm{CO}_{2}\) ) is used, the setting needs to be changed.
Note) When \(\mathrm{CO}_{2}\) is selected, the upper limit of the meas-
\begin{tabular}{|c|}
\hline Dry air, \(\mathrm{N}_{2}\) \\
\hline Argon \\
\hline \(\mathrm{CO}_{2}\) \\
\hline
\end{tabular} ured flow rate range will be \(1 / 2\) of that for other fluids.

\section*{Selection of indication unit reference}

The indication unit reference can be selected between standard conditions and normal conditions.

Standard conditions: Flow rate converted to a volume at \(20^{\circ} \mathrm{C}\) and 1 atm (atmosphere)
Normal conditions: Flow rate converted to a volume at \(0^{\circ} \mathrm{C}\) and 1 atm (atmosphere)

\section*{Setting of response time}

The flow rate may change momentarily during transition between ON (open) and OFF (closed) of the valve. It can be set so that this momentary change is not detected.
<Principle>
When the switch has been in ON area for a set period of time, the output will turn on (or off).

\section*{I Indication mode}

The indication mode can be selected between real-time flow rate and accumulated flow.

Real-time flow rate display Accumulated flow display

\section*{External input function}

The external input function can be selected from accumulated value external reset, auto-shift and auto-shift zero.
(Input signal: Connect input line to GND for 30 ms or more.)
External reset: This function resets the accumulated value to " 0 " when an input signal is applied.
Auto-shift: This function generates an output corresponding to the change in relation to real-time flow rate when an input signal is applied.
Auto-shift zero: This function displays real-time flow rate as " 0 " when a positive input signal is applied in the auto shift function described above.
Set values and flow rates that are relatively on the negative side are expressed by illumination of the decimal point on the far left.

\section*{Indication resolution}

The indication resolution of the PFM710 and 711 series can be changed to enable values to be indicated in smaller steps.
\begin{tabular}{|l|ll|}
\hline \multirow{2}{*}{100 resolution } & \begin{tabular}{l} 
PFM710 \\
PFM711
\end{tabular} & \begin{tabular}{l} 
by \(0.1 \mathrm{e} / \mathrm{min}\) \\
by 1 lmin
\end{tabular} \\
\hline \multirow{2}{*}{1000 resolution } & \begin{tabular}{l} 
PFM710 \\
\\
\\
PFM711
\end{tabular} & \begin{tabular}{l} 
by \(0.01 \mathrm{e} / \mathrm{min}\) \\
by \(0.1 \mathrm{e} / \mathrm{min}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Accumulated value hold}

Accumulated value is not cleared even when the power supply is turned off.
The accumulated value is memorized every 2 or 5 min . during measurement, and continues from the last memorized value when the power supply is turned on again.
The life time of the memory element is 1 million access cycles. Take this into consideration before using this function.

\section*{Selection of analog output filter}

This selection is available when using a product with an analog output.
A signal with fast response speed can be generated by turning off the analog output filter.

\section*{Selection of power-saving mode}

The power-saving mode can be selected.
With this function, if no buttons are pressed for 30 sec., it shifts to power-saving mode.
At the time of shipment from the factory, the product is set to the normal mode (the power-saving mode is turned off).
(When power-saving mode is activated, the decimal point flashes.)

\section*{Setting of secret code}

The user can select whether a secret code must be entered to release key lock.
At the time of shipment from the factory, it is set such that the secret code is not required.

\section*{Peak/Bottom value indication}

The maximum (minimum) flow rate is detected and updated from when the power supply is turned on. In peak (bottom) value indication mode, this maximum (minimum) flow rate is displayed.

\section*{Keylock function}

Prevents operation errors such as accidentally changing setting values.

\section*{Zero clear function}

Allows the user to adjust the measured flow rate indication to zero. The adjustment range is \(\pm 7 \%\) F.S. of the initial factory setting.

\section*{Error indication function}

When an error or abnormality arises, the location and contents are displayed.
\begin{tabular}{|c|c|c|}
\hline Description & Contents & Action \\
\hline \multirow[t]{2}{*}{Flow rate error} & The flow rate exceeds the upper limit of indicated flow rate range. & Decrease the flow rate. \\
\hline & There is a reverse flow equivalent to \(-5 \%\) or more. & Turn the flow to correct direction. \\
\hline \multirow{2}{*}{Overcurrent error} & Load current of 80 mA or more is applied to the switch output (OUT1). & \multirow[t]{2}{*}{Eliminate the cause of the overcurrent by turning off the power supply and then turn on it again.} \\
\hline & Load current of 80 mA or more is applied to the switch output (OUT2). & \\
\hline \multirow{2}{*}{System error} & Possibility of internal circuit damage before factory adjustment. & Stop operation immediately and contact SMC. \\
\hline & System error. Possibility of data memorizing failure or internal circuit damage. & Reset the unit, and carry out all settings again. \\
\hline Zero clear error & If zero clear is performed (by holding down \(\Delta\) and \(\mathbb{0}\) buttons simultaneously for 1 sec .) while there is some flow, "Er4" will be displayed for 1 sec . & Perform zero clear of accumulated flow rate when there is no flow. \\
\hline Flow rate error & The flow rate exceeds the accumulated flow rate range. & Clear the accumulated flow rate. (This error does not matter when the accumulated flow rate is not being used.) \\
\hline
\end{tabular}

If the error or abnormality cannot be solved by the action above, please contact SMC for further investigation.

\section*{Series PFM7/PFM5 Made to Order 1}

Please contact SMC for detailed specifications, lead times and prices.


\section*{Dimensions}

PFM \({ }_{5}^{7} \square \square-\mathrm{C} 4 / \mathrm{C} 6 / \mathrm{C} 8 / \mathrm{N} 7-\square-\mathrm{X693}\)


PFM \({ }_{5}^{7} \square \square-C 4 / C 6 / C 8 / N 7-\square-X 694\)

\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
One-touch fitting \\
Applicable tube O.D.
\end{tabular} & A & B \\
\hline C4 & \(ø 4\left(5 / 32^{\prime \prime}\right)\) & 10.1 & 8.1 \\
\hline C6 & \(ø 6\) & 10.3 & 8.3 \\
\hline C8 & \(\varnothing 8\left(5 / 16^{\prime \prime}\right)\) & 12 & 10 \\
\hline N7 & \(\varnothing 1 / 4\) & 10.3 & 8.3 \\
\hline
\end{tabular}

PFM \({ }_{5}^{7} \square \square-\square 01 / 02-\square-X 693\)


PFM \({ }_{5}^{7} \square \square-\square 01 / 02-\square-X 694\)
\begin{tabular}{c|c|c|c}
\hline Port size & A & B & \begin{tabular}{c} 
C \\
(Width across flats)
\end{tabular} \\
\hline \begin{tabular}{c} 
Rc \(1 / 8,1 / 4\) \\
NPT \(1 / 8,1 / 4\) \\
G \(1 / 8\)
\end{tabular} & 13 & 11 & 17 \\
\hline G \(1 / 4\) & 17 & 15 & 21 \\
\hline
\end{tabular}

\section*{Series PFM7/PFM5}

\section*{Made to Order 2}

Please contact SMC for detailed specifications, lead times and prices.

Dimensions

\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
One-touch fitting \\
Applicable tube O.D.
\end{tabular} & \multicolumn{1}{|c|}{ A } & B \\
\hline\(\varnothing 4(5 / 32\) ") & 10.1 & 8.1 \\
\hline\(\varnothing 6\) & 10.3 & 8.3 \\
\hline\(\varnothing 8(5 / 16\) ") & 12 & 10 \\
\hline\(\varnothing 1 / 4\) & 10.3 & 8.3 \\
\hline
\end{tabular}

PFM \({ }_{5}^{7} \square \square\) S- \(\square 01 / 02-\square\)-X693

\begin{tabular}{c|c|c|c}
\hline Port size & A & B & \begin{tabular}{c} 
C \\
(Width across flats)
\end{tabular} \\
\hline \begin{tabular}{c} 
Rc \(1 / 8,1 / 4\) \\
NPT \(1 / 8,1 / 4\) \\
G \(1 / 8\)
\end{tabular} & 13 & 11 & 17 \\
\hline G \(1 / 4\) & 17 & 15 & 21 \\
\hline
\end{tabular}

PFM \({ }_{5}^{7} \square \square\) S-C4/C6/C8/N7- \(\square\)-X694

\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
One-touch fitting \\
Applicable tube O.D.
\end{tabular} & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c}{ B } \\
\hline\(\varnothing 4(5 / 32 ")\) & 10.1 & 36.1 \\
\hline\(\varnothing 6\) & 10.3 & 36.3 \\
\hline\(\varnothing 8(5 / 16 ")\) & 12 & 37 \\
\hline\(\varnothing 1 / 4\) & 10.3 & 36.3 \\
\hline
\end{tabular}

PFM \({ }_{5}^{7} \square \square S-\square 01 / 02-\square-X 694\)

\begin{tabular}{c|c|c|c}
\hline Port size & A & B & \begin{tabular}{c} 
C \\
(Width across flats)
\end{tabular} \\
\hline \begin{tabular}{c} 
Rc \(1 / 8,1 / 4\) \\
NPT \(1 / 8,1 / 4\) \\
G \(1 / 8\)
\end{tabular} & 13 & 39 & 17 \\
\hline G \(1 / 4\) & 17 & 43 & 21 \\
\hline
\end{tabular}

Please contact SMC for detailed specifications, lead times and prices.

Symbol

\section*{Compatibility with argon (Ar) and carbon dioxide ( \(\mathrm{CO}_{2}\) ) mixed gas}

The argon-carbon dioxide gas ratio ( \(\mathrm{Ar}: \mathrm{CO}_{2}\) ) can be selected using the push-buttons from among the following: 92:8,90:10, \(80: 20,70: 30\), and 60:40. Dimensions are same as those of standard models.


For details of How to Order, refer to page 906 and 918.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|c|}{Gas ratio} & \multirow[b]{2}{*}{Rated flow range} & \multirow[b]{2}{*}{Displayable range} & \multirow[b]{2}{*}{Settable range} & \multicolumn{2}{|r|}{Max. analog output} \\
\hline & Ar & \(\mathrm{CO}_{2}\) & & & & Voltage (Vmax) & Current (Imax) \\
\hline \multirow{5}{*}{PFM710} & 92\% & 8\% & \multirow{5}{*}{0.2 to 7.0 e/min} & \multirow{5}{*}{0.2 to 7.4 //min} & \multirow{5}{*}{0 to \(7.4 \mathrm{l} / \mathrm{min}\)} & \multirow{5}{*}{3.80 V} & \multirow{5}{*}{15.2 mA} \\
\hline & 90\% & 10\% & & & & & \\
\hline & 80\% & 20\% & & & & & \\
\hline & 70\% & 30\% & & & & & \\
\hline & 60\% & 40\% & & & & & \\
\hline \multirow{5}{*}{PFM725} & 92\% & 8\% & \multirow[t]{2}{*}{0.5 to \(25.0 \mathrm{e} / \mathrm{min}\)} & \multirow[t]{2}{*}{0.5 to 26.3 e/min} & \multirow[t]{2}{*}{0 to \(26.3 \mathrm{l} / \mathrm{min}\)} & \multirow[t]{2}{*}{5.00 V} & \multirow[t]{2}{*}{20.0 mA} \\
\hline & 90\% & 10\% & & & & & \\
\hline & 80\% & 20\% & \multirow{3}{*}{0.5 to 20.0 e/min} & \multirow{3}{*}{0.5 to 21.0 //min} & \multirow{3}{*}{0 to \(21.0 \mathrm{e} / \mathrm{min}\)} & \multirow{3}{*}{4.20 V} & \multirow{3}{*}{16.8 mA} \\
\hline & 70\% & 30\% & & & & & \\
\hline & 60\% & 40\% & & & & & \\
\hline \multirow{5}{*}{PFM750} & 92\% & 8\% & \multirow[b]{2}{*}{1.0 to \(50.0 \mathrm{e} / \mathrm{min}\)} & \multirow[t]{2}{*}{1.0 to 52.5 e/min} & \multirow[t]{2}{*}{0 to 52.5 e/min} & \multirow[t]{2}{*}{5.00 V} & \multirow[t]{2}{*}{20.0 mA} \\
\hline & 90\% & 10\% & & & & & \\
\hline & 80\% & 20\% & \multirow{3}{*}{1.0 to \(40.0 \mathrm{e} / \mathrm{min}\)} & \multirow{3}{*}{1.0 to \(42.0 \mathrm{e} / \mathrm{min}\)} & \multirow{3}{*}{0 to \(42.0 \mathrm{e} / \mathrm{min}\)} & \multirow{3}{*}{4.20 V} & \multirow{3}{*}{16.8 mA} \\
\hline & 70\% & 30\% & & & & & \\
\hline & 60\% & 40\% & & & & & \\
\hline \multirow{5}{*}{PFM711} & 92\% & 8\% & \multirow[b]{2}{*}{2 to \(100 \mathrm{e} / \mathrm{min}\)} & \multirow[b]{2}{*}{2 to \(105 /\) min} & \multirow[b]{2}{*}{0 to \(105 \mathrm{l} / \mathrm{min}\)} & \multirow[b]{2}{*}{5.00 V} & \multirow[b]{2}{*}{20.0 mA} \\
\hline & 90\% & 10\% & & & & & \\
\hline & 80\% & 20\% & 2 to \(90 \mathrm{e} / \mathrm{min}\) & 2 to \(95 \mathrm{c} / \mathrm{min}\) & 0 to \(95 \mathrm{c} / \mathrm{min}\) & 4.60 V & 18.4 mA \\
\hline & 70\% & 30\% & \multirow[t]{2}{*}{2 to \(80 /\) min} & \multirow[t]{2}{*}{2 to \(84 \mathrm{e} / \mathrm{min}\)} & \multirow[t]{2}{*}{0 to \(84 \mathrm{e} / \mathrm{min}\)} & \multirow[t]{2}{*}{4.20 V} & \multirow[t]{2}{*}{16.8 mA} \\
\hline & 60\% & 40\% & & & & & \\
\hline
\end{tabular}

\section*{Output characteristics using mixed gas}


Be sure to read before handling.
Refer to front matters 58 and 59 for Safety Instructions and pages 892 to 896 for Flow Switch Precautions.

\section*{Design and Selection}

\section*{4 Warning}
1. Operate the switch only within the specified voltage.
Use of the switch outside of the specified voltage range can cause not only a malfunction and damage to the switch, but it can also cause electrocution and fire.
2. Do not exceed the maximum allowable load specification.
A load exceeding the maximum load specification can cause damage to the switch.
3. Do not use a load that generates surge voltage.
Although surge protectiion is installed in the circuit at the output side of the switch, damage may still occur if a surge is applied repeatedly. When working directly such an unit as relay, solenoid valve, etc., which generates surge, use a built-in surge absorbing element type.
4. Be sure to verify the applicable fluid.

The switches do not have an explosion proof rating. To prevent possible fire hazard, do not use with flammable gases or fluids.
5. Monitor the internal voltage drop of a switch.

When operating below the specified voltage, it is possible that a load may be ineffective, even though the pressure switch function is normal. Therefore, the formula below should be satisfied after confirming the voltage of the load.
\begin{tabular}{|l}
\begin{tabular}{l} 
Supply \\
voltage
\end{tabular} \\
\begin{tabular}{l} 
Internal voltage \\
drop of switch
\end{tabular}\(>\) \\
Minimum operating \\
voltage of load
\end{tabular}
6. Use the switch within the specified flow rate measurement and operating pressure.
Operating beyond the specified flow rate and operating pressure can damage the switch.
7. Never use flammable fluids and/or permeable fluids.
They may cause a fire, an explosion or corrosion.
* Refer to the MSDS (Material Safety Data Sheet) when using chemicals.
8. To prevent damage due to failure and/or malfunction of the product, establish a backup system such as a fail-safe system which enables multiple-stage type operation of the equipment and machinery.
9. When the product is for an interlock circuit, the following points should be noted.
- Provide double interlocking through another system (mechanical protection function, etc.).
- Perform checks to ensure the product is operating properly, as there is a risk of injury.

\section*{\(\triangle\) Caution}
1. Ensure sufficient space for maintenance activities.
Provide space required for maintenance.
2. The direct-current power supply to combine should be UL authorized power supply.
(1) Limited voltage current circuit in accordance with UL 508. A circuit in which power is supplied by the secondary coil of a transformer that meets the following conditions.
- Maximum voltage (with no load):

30 Vrms (42.4 V peak) or less
- Maximum current:
(1) 8 A or less (including when short circuited)
(2) limited by circuit protector (such as fuse) with the following ratings.
\begin{tabular}{|c|c|}
\hline No load voltage (V peak) & Max. current rating \\
\hline 0 to \(20[\mathrm{~V}]\) & 5.0 \\
\hline Above 20 to \(30[\mathrm{~V}]\) & 100 \\
\cline { 2 - 2 } & Peak voltage \\
\hline
\end{tabular}
(2) A circuit using max. 30 Vrms or less ( 42.4 V peak), which is powered by UL 1310 compatible Class-2 power supply or UL 1585 compatible Class-2 transformer (Class-2 circuit).
3. Data of the switch are stored even after the power supply is turned off.
Input data is stored in an EEPROM so that the data will not be lost after the flow switch is turned off. (The data can be rewritten for up to one million times, and stored for up to 20 years.)
Mounting
1. Monitor the flow direction of the fluid.
Install and connect piping so that fluid flows in the direction of
the arrow indicated on the body. handling. Although the external body of a switch (switch case) may not be damaged, the switch inside could be damaged and cause a malfunction.
4. Hold the body of the switch when handling.

The tensile strength of the cord is 49 N and applying a greater pulling force than this can cause a malfunction. When handling, hold the body of the switch.
5. Do not use until you can verify that equipment can operate properly.
Following mounting, repair, or retrofit, verify correct mounting by conducting suitable function and leakage tests after piping and power connections have been made.
6. Never mount the switch in a place that will be used as a scaffold during piping.
7. Apply a wrench only to the metal part of the piping when installing the flow switch in the system piping.
There is a risk of breakage of the switch.

Be sure to read before handling.
Refer to front matters 58 and 59 for Safety Instructions and pages 892 to 896 for Flow Switch Precautions.

\section*{Mounting}

\section*{\(\triangle\) Caution}
1. Observe the proper tightening torque.

When the switch is tightened beyond the specified tightening torque, the switch may be damaged.
2. Do not mount the switch in a place that will be used as a scaffold.
The switch could break if subjected to excessive load such as being accidentally stepped on.
3. Use a tapping screw (P-tite) with nominal diameter of 3 to mount the product by using the bracket mounting hole(s) at the bottom.
The length of the screw depends on the thickness of the plate to be fixed. Please select a screw whose length is the thickness of the plate +4.8 mm . (The hole depth is 5 mm .)

4. When fixing the switch with screws using mounting holes, use a tightening torque of \(0.3 \mathrm{~N} \cdot \mathrm{~m}\) or less. If necessary, tighten the product to prevent it from loosening.


\section*{Wiring}

\section*{Warning}
1. Verify the color and the terminal number when wiring.
Incorrect wiring can cause the switch to be damaged and malfunction. Verify the color and the terminal number in the instruction manual when wiring.
2. Use caution not to repeatedly apply bending or stretching forces to the lead wire.
Repeated pulling or bending of the lead wire may cause some of the wires to break.

\section*{Wiring}

\section*{Warning}
3. Confirm proper insulation of wiring.

Make sure that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals,
etc.). Damage may occur due to excess current flow into a switch.
4. Do not wire in conjunction with power lines or high voltage lines.
Wire separately from power lines and high voltage lines, and avoid wiring in the same conduit with these lines. Control circuits, including switches, may malfunction due to noise from these lines.

\section*{5. Do not short-circuit a load.}

Although the switch displays an overcurrent error if a load is shortcircuited, there is not protection against incorrect wiring (power source polarity, etc.). Use caution to avoid wiring incorrectly.
6. Do not connect wiring while energizing the product.
The switch and any equipment connected to it could break and malfunction.

\section*{Operating Environment}

\section*{© Warning}
1. Never use in the presence of explosive gases.

The switch does not have an explosion proof construction. If it is used in an environment where explosive gases are used, it may cause an explosive disaster. Therefore, never use it in such an environment.
2. Mount the switch in a location where there is no vibration greater than \(98 \mathrm{~m} / \mathrm{s}^{2}\), or no impact greater than \(490 \mathrm{~m} / \mathrm{s}^{2}\).
With a switch with orifice, the adjusted flow rate value could be affected by vibration.
3. Do not use in an area where surges are generated. When there are units that generate a large amount of surge in the area around a pressure switch, (e.g., solenoid type lifters, high frequency induction furnaces, motors, etc.) this may cause deterioration or damage to the switch's internal circuitry. Avoid sources of surge generation and crossed lines.
4. Switches are not equipped with surge protection against lightning.
The flow switches are CE compliant; however, they are not equipped with surge protection against lightning. Lightning surge protection measures should be applied directly to system components as necessary.
5. Avoid using the switch in an environment where the likelihood of splashing or spraying of liquids exists.
The switch is an open type and should not be used in an environment exposed to splashing of water and oil.
6. Do not use the product in an environment subject to a temperature cycle.
If the product is subject to a temperature cycle other than natural changes in air temperature, the internal components of the switch could be adversely affected.
7. Do not mount the product in locations where it is exposed to radiant heat.
This could result in damage and/or malfunction.

\section*{Specific Product Precautions 3}

Be sure to read before handling.
Refer to front matters 58 and 59 for Safety Instructions and pages 892 to 896 for Flow Switch Precautions.

\section*{Maintenance}

\section*{Warning}
1. Perform periodical inspections to ensure proper operation of the switch.
Unexpected malfunctions may cause possible danger.
2. Take precautions when using the switch for an interlock circuit.
When a pressure switch is used for the interlock circuit, devise a multiple interlock system to prevent trouble or malfunction, and verify the operation of the switch and interlock function on a regular basis.
3. Do not make any modifications (including exchanging the printed circuit boards) to the product.
It may cause human injuries and damage.
4. When maintenance work is performed, the following points should be noted.
- Turn off the power supply.
- Cut off the fluid supply, drain the fluid from the piping and ensure the fluid is released to atmosphere before carrying out maintenance. Otherwise, it could cause injury.

\section*{\(\triangle\) Caution}
1. Do not wipe the product with chemicals such as benzene or thinner.
Such chemicals could damage the product.
2. The accuracy could change by 2 to \(3 \%\) when the piping is removed or replaced.
The repeatability accuracy is \(\pm 1 \%\) F.S. when piping is replaced with piping of the same size. However, the accuracy could change by 2 to \(3 \%\) if the size is different or when changing from straight to elbow or from elbow to straight piping.
3. Do not poke the inside of the piping port with a stick.
The rectifier could break, making the product unable to sustain the desired performance.
4. Do not touch terminals or connectors when energizing the product.
It could cause electric shock, malfunction, or damage to the switch.

\section*{Fluid}

\section*{© Warning}
1. Check regulators and flow adjustment valves before introducing the fluid.
If pressure or flow rate beyond the specified range are applied to the switch, the sensor unit may be damaged.
2. Install a filter on the inlet side when there is a possibility of foreign matter being mixed with the fluid.
3. Use dry air of quality compliant with JIS B 8392-1 1.1.2 to 1.6.2: 2003 for this product.
If any mist or drainage present in the air attaches to the product, accurate measurement could be prevented. Also, the accuracy of the product could be degraded.

Recommended air circuits
<Compressed air line>


\section*{© Warning}
1. After the power is turned on, the switch's output remains off while a message is displayed. Therefore, start the measurement after a value is displayed.
2. Perform settings after stopping control systems.
Operation reflects the new values when settings are made. However, if the power is turned OFF in that state, the settings return to the values before the change when the power is turned ON again. Make sure to press the \(S\) button to save any setting changes before turning OFF the power.

\title{
Series PFM \\ Specific Product Precautions 4
}

Be sure to read before handling.
Refer to front matters 58 and 59 for Safety Instructions and pages 892 to 896 for Flow Switch Precautions.

\section*{Settable Range and Rated Flow Range}

\section*{\(\triangle\) Caution}

\section*{Set the flow rate within the rated flow range.}

The settable rate range is the range of flow rate that can be set in the switch.
The rated flow range is the range that satisfies the switch specifications (accuracy, linearity etc.).
It is possible to set a value outside of the rated flow range if it is within the settable range, however, the specification is not be guaranteed.
The flow range if using \(\mathrm{CO}_{2}\) is given in brackets.


In the case of the PFM5 series, the displayable and settable ranges are the same as the PFM3 series flow monitor```


[^0]:    ( ): Fluid: $\mathrm{CO}_{2}$

