Setra's 231 is a multi-configurable, wet-to-wet differential pressure transducer offering the user an all-in-one device with field selectable pressure ranges and analog outputs. The device is offered with an optional 3 or 5 valve machined brass manifold for ease of installation and maintenance. The 231 has a robust, NEMA 4 enclosure with a hinged, captive cover allowing for easy access to switches for adjusting the range and output. An optional display is available that allows users to view high, low, and differential pressure readings on a simple rotating cycle.

## Field selectable pressure ranges

The 231 offers 8 field selectable pressure ranges which can be changed using a slide switch, reducing risk of installing the wrong range unit. The multi-range functionality allows the user to hold less inventory and add additional flexibility in the field.

## Quick and simple installation

The 231 provides the user with an optional 3 or 5 valve machined brass manifold which can save money on installation and maintenance. The single piece construction of the brass body has no internal process connections, eliminating the risk of internal leaks.

## Robust enclosure for difficult applications

The 231 NEMA 4 housing offers an optional LCD display for instant indication of the high, low and differential pressure readings. A hinged enclosure makes it suitable for harsh environments and saves the hassle of misplacing it when completing a difficult installation.

## Specifications

## Electrical data (voltage)

| Circuit | 3-Wire <br> Excitation$\quad 15$ to $30 \mathrm{VDC} / 18$ to 30 VAC (Reverse Excitation Protected) |
| :--- | ---: |
| Output ${ }^{1}$ | 0 to $5 \mathrm{VDC}, 0$ to $10 \mathrm{VDC}, 1$ to 5 VDC |
| Output impedance | $30 \Omega$ |
| Circuit consumption | 8 mA (typ.) at $5 \mathrm{VDC}, 8 \mathrm{~mA}$ (typ) at 10 VDC, |
| 40 mA (typ.) at $18-30 \mathrm{VAC}$ |  |

## Electrical data (current)

| Circuit | 2-wire (reverse excitation protected) |
| :--- | ---: |
| Output $^{2}$ | 4 to 20 mA |
| External load | 0 to $250 \Omega$ |
| Min. supply voltage | $15 \mathrm{VDC}+0.02 \times$ (resistance of receiver plus line) |
| Max. supply voltage | $30 \mathrm{VDC}+0.004 \times$ (resistance of receiver plus line) |

## Physical description

| Case | Die cast aluminum, powder coated |
| :--- | ---: |
| Pressure fittings | $1 / 8-18 \mathrm{NPT}$ internal |
| Electrical connection | $1 / 2 \mathrm{in}$. conduit |
| Size | $4.0 \times 6 \times 2 \mathrm{in} .(102 \times 152 \times 51 \mathrm{~mm})$ |
| Weight | 1.5 lb |
| Sensor vacity volume | 0.2 cc |

## Environmental data

| Operating ${ }^{3}$ temperature ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$ | -4 to $+185(-20$ to -85$)$ |
| :---: | :---: |
| Storage temperature ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$ | -4 to $+185(-20$ to +85$)$ |
| Vibration | 10 g from 50 Hz to 2000 Hz |
| Shock | 200 g |

${ }^{1}$ Calibrated into a 50 K ohm load, operable into a 5000 ohm load or greater.
${ }^{2}$ Calibrated at factory with a 24 VDC loop supply voltage and a 250 ohm load.
${ }^{3}$ Operating temperature limits of the electronics only. Pressure media temperatures may be considerably higher or lower.
${ }^{4}$ RSS of Non-Linearity, Hysteresis, and Non-Repeatability
${ }^{5}$ Units calibrated at nominal $70^{\circ} \mathrm{F}$. Maximum thermal error computed from this datum.
Specifications subject to change without notice.

## Performance data

Accuracy RSS ${ }^{4}$ (at constant temp.)

| Pressure ranges A, B, C: | $\pm 1.0 \% \mathrm{FS}$ |
| :--- | :--- |
| Pressure ranges D: | $\pm 2.0 \% \mathrm{FS}$ |
| Pressure ranges (PSID) |  |


| Range code | A | B | C | D | Max. line <br> pressure |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MS1 | 50 | 25 | 10 | 5 | 50 |
| MS2 | 100 | 50 | 20 | 10 | 100 |
| MS3 | 250 | 125 | 50 | 25 | 250 |

## Pressure media

Liquids or Gases Compatible with 17-4 PH Stainless Steel
Note: Hydrogen not recommended for use with 17-4 PH stainless steel
Thermal effects ${ }^{5}$

| Compensated range ${ }^{\circ} \mathbf{F}\left({ }^{\circ} \mathbf{C}\right)$ | +32 to $+130(0$ to +54$)$ |
| :--- | ---: |
| Zero/Span Shift \%FS/100 ${ }^{\circ} \mathbf{F}\left(\mathbf{5 0}{ }^{\circ} \mathbf{C}\right)$ | $2.0(1.8)$ |
| Warm-up shift | $<0.12 \% \mathrm{FS}$ |
| Surge damping | 1 to 5 sec. (selectable) |
| Proof pressure | $2 \times$ Full Scale |
| Burst pressure | $15 \times$ Full Scale $(50 \mathrm{PSI})$,  <br>  $10 \times$ Full Scale (75 $\times 150 \mathrm{PSI})$, <br> $8 \times$ Full Scale $(250 \mathrm{PSI})$  |

## Ordering information

Example part number: 231GMS12FD;
Model 231, 5 PSID up to 50 PSID, 1/8" NPT Int. fitting, and LCD display:



| Range specifications $^{\mathbf{1}}$ |  |  |
| :--- | :---: | :---: |
|  | Unidirectional | Bidirectional $^{\mid \text {MS1 }}$ |
| MS2 | $5,10,25,50$ PSID | $\pm 5, \pm 10, \pm 25, \pm 50$ PSID |
| MS3 | $25,50,125,250$ PSID | $\pm 25, \pm 50, \pm 125, \pm 250$ PSID |


| Pressure connection |  |  |
| :---: | :---: | :---: |
| 2F | 1/8-18 NPT female (standard) sensor (conduit version) |  |
| 3V | 3-V manifold assembled w/ Model 231 |  |
| 5V | 5-V manifold assembled w/ Model 231 |  |
| $\boldsymbol{y y}$ | Display |  |
| $\boldsymbol{N}$ | No display |  |
| $\boldsymbol{D}$ | LCD display |  |

[^0]
## Dimensions



Dimensions - 3 valve manifold assembly
Manifold Block
Valves (3)

|  | V2 for connection to -port |
| :--- | :--- |
|  | V3 for equalizing pressure |
| Valve type | 90 Degree On/Off |
| Process Connections | $1 / 4^{\prime \prime}-18$ NPT Internal Thread |



## Dimensions - 5 valve manifold assembly

Manifold Block
Valves (5)

Brass
V1 for connection to $\pm$ port
V2 for connection to -port
V3 for equalizing pressure
V4 for connection to external gauge or alternate plumbing configuration V5 for connection to external gauge or alternate plumbing configuration 90 Degree On/Off
Valve Type
Process Connection 1/4 "-18 NPT Internal Thread


inches (mm)

Installation

${ }^{1}$ Valves not included

## Pressure range code selector

NOTE: Please read before ordering.

1. Examine the pressure application and determine what is the Highest System Line Pressure.
2. Determine what is the Differential Pressure being measured.
3. Find the MAX. Line Pressure in the table on the right that is $\geq$ to your Highest System Line Pressure.
4. Verify that your DP falls within the selectable ranges in that row.
5. Follow that row to the left and select that range code.

| Range Code | A | B | C | D | Max. Line Pressure |
| :--- | :---: | :---: | :---: | :---: | :---: |
| MS1 | 50 | 25 | 10 | 5 | 50 |
| MS2 | 100 | 50 | 20 | 10 | 100 |
| MS3 | 250 | 125 | 50 | 25 | 250 |

## Example:

Highest system line pressure:
Differential pressure measured:
"Max line pressure" $\geq$ to system line pressure:
Select range code:

125 PSIG
50 PSID
250 PSID (50 PSID DP falls within ranges in this row)
MS3


[^0]:    'Maximum line pressure is maximum range of pressure ordered

